Faydalı Bilgiler
Güneş Enerji Uygulamalarının Tarihsel Gelişimi

 

Bir fotovoltaik sistemin en önemli bölümü olan fotovoltaik levhalar güneş enerjisini doğru akım elektrik enerjisine dönüştürürler. Güneş pillerinin bir araya gelmesiyle fotovoltaik modüller elde edilir. Bu modüllerin bir araya gelmesiyle fotovoltaik levhalar oluşturulur. Bu levhalar ise gerekli miktarda kullanılarak fotovoltaik sistem oluşturulur. Tipik bir fotovoltaik levha güneşli açık bir havada 12 volt, 10 amper kadar yani 120 watt elektrik üretilebilir. Elde edilen gerilimi artırmak için levhalar seri olarak, akımı artırmak için ise paralel olarak bağlanabilirler. Genel olarak küçük uygulamalarda bir veya birkaç tane fotovoltaik levha kullanılmaktadır. Güneş olmadığı zamanlarda bataryalardan daimi akım çekilir ve güneş olduğu zamanlarda batarya şarj edilir. Bataryalar genelde kurşun asit çeşidi olmalarına rağmen, araba bataryalarına kıyasla derin şarj-deşarj özelliklerine sahiptirler. Fotovoltaik sistemlerde fazla enerji depolama maksadı ile genel olarak birden fazla batarya paralel olarak bağlanır ve bu şekilde toplam depolama kapasitesi artırılmış olur.
3.3 Regülatör
Fotovoltaik sistemlerde güneş olduğu zamanlarda bataryaların tamamıyla dolduktan sonra akım almalarını (overcharge) önlemek gerekir. Fazla şarj bataryanın ısınmasına, sıvı kaybına ve batarya ömrünün kısalmasına yol açar. Regülatör, fotovoltaik levhalar ile bataryalar arasına konur ve bataryaların fazla şarj olmalarını önler. Çalışma prensibi olarak regülatör batarya voltajını sürekli kontrol eder, batarya dolunca bataryaya giden akımı otomatik olarak keser.
Bir regülatör seçerken dikkat edilmesi gereken en önemli husus, regülatörün gerekli olan maksimum akıma dayanıklı olmasıdır. Seçilen regülatörün, kullanılan batarya voltajı ile uyumlu olmasına da dikkat edilmelidir.
3.3.1 Zener Diyot İle Regülasyon
Düşük güçlü PV üreteçlerde aküye paralel bağlanmış bir zener diyodu ile akü gerilimi sürekli olarak aynı değer civarında tutulabilir.

3.3.2 Paralel Regülatör
Aküye paralel bağlanan bir transistörün elektriksel geçirgenliği, akü gerilimine veya akü akımına orantılı olarak otomatik ayarlanır.

3.3.3 Seri Regülatör
Paralel tipte olduğu gibi ayarlanır. Ancak paralel tipten farklı olarak, seri transistör devrede sürekli aktif durumda olduğundan belirli bir enerji burada ısıya dönüşerek kayba uğramaktadır.

3.3.4 Süreksiz Çalışan Şarj-Deşarj Regülatörü
Birden fazla modülün paralel bağlı olduğu PV jeneratörlerde, aküye giden şarj akımı, bazı modüllerin devreden çıkarılması veya devreye alınması ile azaltılabilir veya çoğaltılabilir. Aynı şekilde akü şarj seviyesi kritik değerin altına indiğinde de yük devreden çıkartılır. Bu müdahaleler sisteme süreksiz karakterde çalışan bir regülatör vasıtasıyla yapılır.
3.4 İnverter
İnverter 12 veya 24 Volt düşük doğru akımı 240 volt alternatif akıma dönüştürür. Birkaç tane elektrikli cihazı besleyen küçük fotovoltaik sistemlerde inverter yerine düşük voltajlı doğru akımla çalışan elektrikli cihazlar kullanmak daha verimli olabilir. Örneğin, 12 Volt ile çalışan buzdolabı, televizyon, lamba vb. elektrikli cihazlar kullanıldığı takdirde invertere ihtiyaç olmayacaktır. Yalnız düşük voltaj ile çalışan elektrikli cihazlar genelde daha pahalı olup çeşit bulmak da oldukça güçtür
İnverterin çalışma prensibi: D.a gerilimi alır bir veya bir kaç çift transistörden geçirir. Sırasıyla bu transistörlerin tetiklenip bırakılması ile a.a. gerilimi elde edilir. Bir transformatör yardımı ile konutlarda kullanılan 220 volt şebeke gerilimi elde edilmiş olur. Kare dalga inverterler genellikle motorlarda ve el aletlerinde kullanışlıdır. Sinüs dalga inverterler ise diğer elektronik cihazlarda kullanılır. Sinüs dalga inverterler, kare dalga inverterlere göre daha düzenlenmiş ve temizlenmiş bir inverter tipidir, fakat daha pahalıdır.

Fotovoltaik sistemlerde, çıkış dalga şekline bağlı olarak 3 çeşit inverter kullanmak mümkündür.
3.4.1 Kare Dalga İnverter
Bu tip inverterler doğru akımı kare dalgaya dönüştürür. Kare dalga inverter ucuz olup daha çok aydınlatma, soba, motor vb. hassas olmayan elektrikli cihazlar için kullanılır.
3.4.2 Değiştirilmiş Sinüs Dalgası İnverter
Bu inverterlerde çıkış dalga şekli sinüs dalgasına benzetilmiştir. Bu tip inverterler televizyon, radyo, mikrodalga vb. birçok elektronik cihazı çalıştırmak için kullanılır.
3.4.3 Sinüs Dalgası İnverter
Bu inverterler tam bir sinüs dalgası üretirler. Bu tip inverterler pahalı olup çok hassas elektronik cihazlarını (örneğin lazer yazıcı, bilgisayar vb.) çalıştırmak için kullanılabilir.
Bir inverter seçerken dikkat edilmesi gereken en önemli nokta, inverterin daimi ve kısa anlık güç kapasitesidir. Seçilen inverterin, kullanılanı batarya voltajı ile uyumunun sağlanması da dikkat edilmesi gereken bir husustur.
4. GÜNEŞ PİLİ SİSTEMLERİNİN EKONOMİSİ
Güneş pili sistemlerinin enerji maliyetini üç önemli etken belirler. Bunlar:

• Pil verimi
• Sistemin ilk yatırım maliyeti
• Sistemin ömrü
4.1 Verim
Pil veriminin maliyet üzerinde doğrudan bir etkisi vardır. Bu verimin artırılmasıyla güneş pili sistemlerinin maliyeti azalacaktır. Daha gelişmiş teknolojiler kullanılarak gelecekte pil verimlerinin %24’ler mertebesine çıkarılacağı umulmaktadır.
4.2 Yatırım Maliyeti
Güneş pili sistemlerinin işletme ve bakım maliyetleri çok az olduğu için toplam sistem maliyetinin büyük bir kısmını ilk yatırım maliyeti oluşturur. Üretim teknolojisinin geliştirilmesi yüksek verimli pillerin yapılması, modül tasarım ve yapım tekniklerinin geliştirilmesi ile ilk yatırım maliyeti azalacaktır. Güneş pili sistemlerinin ilk yatırım maliyetleri arasında arazi, tesisat, montaj, inverter ve diğer güç cihazları gibi destek elemanlarının maliyeti yer alır. Destek sistemlerinin maliyeti bir güneş pili sistemini maliyetinin yaklaşık yarısını oluşturduğu için, bu tür maliyetleri azaltmak en az modül maliyetini azaltmak kadar önem taşır.
4.3 Modül Ömrü
Silisyum kristal piller için bu etken fazla önem taşımaz. Çünkü bu pillerde hedeflenmiş olan 30 yıllık ömre ulaşılmıştır. Amorf silisyum ve diğer güneş pili türlerinde zamanla güç çıkışı bozularak azaldığı için ömür daha önemlidir. Modül ömrünün artmasının enerji maliyetleri üzerinde etkisi olacaktır.
Bir güneş pili sisteminin ürettiği enerjinin maliyeti, depolama yapılmadığı zaman 0.3-0.4 $/ kWh arasındadır. Bu maliyetle güneş pili sistemleri, enterkonnekte şebekenin olmadığı veya ulaşımın zor ve pahalı olduğu bölgelerde diğer alternatif enerji kaynakları ile yarışabilir düzeydedir. Bu gibi yerlerde bir kaç kW’a kadar küçük güçteki uygulamalar (iletişim, ilaç-aşı soğutma, su pompası ve aydınlatma gibi), teknolojik açıdan olduğu kadar ekonomik açıdan da kendini kanıtlamıştır.
5. GÜNEŞ PİLİ SİSTEMLERİNİN ÜSTÜNLÜKLERİ
Güneş pilleri dayanaklı, güvenilir ve uzun ömürlüdür. Çalışmaları sırasında bir elektriksel sorun çıkarmazlar ve bozulmazlar. Güneş pili modüllerinin karşı karşıya kalabilecekleri en büyük tehditler, yıldırım düşmesi ve uzun dönemde (yaklaşık 20 yıl) hava koşullarından dolayı aşınmadır.

Güneş pilleri modüler yapıdadır, uygun şekilde düzenlenerek 1V’tan, bir kaç kV’a kadar çıkış verebilirler. Çok küçük güç ihtiyaçlarını karşılayabildikleri gibi, kendi başlarına bir güç santralı olarak da çalışabilirler.

İlk yatırım maliyetlerinin fazla olması güneş pili sistemlerinin en büyük dezavantajıdır. Elektrik şebekesinin olduğu yerlerde güneş pilinin kullanılması ilk anda maliyet açısından uygun olmayabilir. Ancak elektrik şebeke hattı bulunmayan veya elektrik şebeke hattının götürülmesinin pahalıya mal olduğu kırsal yörelerde güneş pillerinin kullanımı daha ekonomik olabilmektedir. Çünkü güneş pili sistemlerinde bir kez yatırım yapıldıktan sonra başka masraf olmamaktadır. Oysa dizel jeneratörler ucuz satın alma fiyatlarına karşılık, yakıt ve bakım maliyetleri nedeniyle uzun dönemde daha pahalıya mal olmaktadır. Genellikle ulaşımın da zor olduğu bu tip kırsal yörelerde, dizel jeneratörlere sürekli yakıt taşımak sorun olabilmektedir. Jeneratörlerin tersine, güneş pilleri bakım gerektirmez, parça değişimleri gibi bir sorunları yoktur.

Güneş pili sistemlerinin en fazla üstünlük gösterdiği alanlardan biriside, tıpkı bütün diğer yenilenebilir enerji kaynaklarında (rüzgar, hidrolik, termal güneş, jeotermal) olduğu gibi çevre açısından olumsuz etkilere sahip olmamasıdır. Halen dünya enerji tüketiminin % 80’ini oluşturan fosil kökenli yakıtlar, neden oldukları asit yağmuru, karbondioksit yayınım gibi dezavantajlarla dünya iklimi için tehlike oluşturmaktadır. Benzer şekilde nükleer enerji de muhtemel kazalar ve radyoaktif atıklar nedeniyle kamuoyunu rahatsız etmektedir. Oysa güneş pilleri, çevre açısından temiz enerji kaynaklarıdır.

Güneş pillerinin yakıtı güneş enerjisidir. Yakıt masrafı yoktur. Çevreyi kirletmezler. İleride dünyayı bekleyen en önemli sorunların global kirlenme ve sera gazı emisyonu olacağı artık bilinmektedir. Petrol türevi tüm yakıtlar sera gazı emisyonu yaparlarken, güneş pillerinin diğer sürdürülebilir enerji kaynaklarında olduğu gibi doğaya hiçbir zararlı etkisi yoktur. Dünya da her konuda olduğu gibi enerjide de merkeziyetçilikten, bireyselliğe yönelim vardır. Her ev, kendi enerjisini çatısına kurduğu güneş pilleriyle karşılayabilir. Böylece iletim ve enerjiyi taşıma maliyetleri ve kayıpları ortadan kalkar. Petrol rezervleri 50 yıl içinde tükeneceği tahmin edilmektedir. Ancak dünyanın enerji ihtiyacı her geçen gün çığ gibi büyümektedir. Dünya, petrol gibi konvansiyonal enerji kaynaklarından, yeni enerjiye geçmek zorundadır. Bu geçiş döneminde petrolün önlenemez fiyat artışlarına şahit olabiliriz. Ancak güneş pili teknolojisinin hammaddesi kumdur. Dünya da çok fazla bulunur. Güneş pili teknolojisi ilerledikçe, hammade sarfiyatı da ince film teknolojisinde olduğu gibi azalmaktadır. Bununla paralel olarak fiyatlarda düşme eğilimindedir. Daha ilerisi için Hidrojen enerjisinin, petrolün yerine geçeceği düşünülmektedir. Ancak Hidrojen bile elektroliz yoluyla yine güneş pillerinden elde edilecektir. Petrol ile yeni enerjinin ve güneş pillerinin birim maliyetlerde fiyat çakışma noktası sanıldığı kadar uzak değidir. Bunun farkında olan gelişmiş ülkelerin hemen hepsi, şebekeye bağlı güneş pilleri sistemlerini destekleyici kanunlar çıkarmış ve uygulamıştır. Almanya hatta İngiltere gibi Türkiye’ye göre güneş fakiri ülkelerde bile, bugün yüz binlerce ev, enerjisini güneşten almaya başlamıştır. Türkiye de bu gelişimlerin gerisinde kalamaz, kalmamalı.
6. PV GÜÇ SİSTEMLERİNİN FİYATLARI
PV güç sistemlerinin fiyatlarının önemli bir bölümünü modül fiyatları oluşturur. Güç sistemlerinin büyüklüğüne ve kullanılan malzemeye bağlı olarak modül fiyatları dalgalanmalar gösterse de, fabrika çıkış fiyatı kristalli silisyum için 5,5$/W ile 4,9$/W arasında; amorf silisyum için 4.9$W ile 4,1$/W arasında değişmektedir. 1993 ve 1995 yılları arasında modül fiyatları %20-39 arasında düşüşler göstermiş ve bu maliyet düşüşü sürmektedir. Yıllık modül üretim kapasitesi 1997 de 120MW/yıl civarında gerçekleşmiştir. 1996 da Madrid de yapılan ‘Avrupa için yenilenebilir Enerji Stratejileri’ konferansında küresel boyutlarda gerçek PV güç isteminin 500 MW/yıl ile 1 GW/yıl arasında olduğu belirtilmiştir.

PV modüllerinde üretilen d.a. elektriğin, a.a. elektriğe dönüştürülmesinde gerçekleştirilen çeviriciler. Sistem fiyatına 0.88$/VA ve 1.065$/VA arasında değişen bir katkı getirmektedir.

PV güç sistemlerinin anahtar teslim $/W fiyatları, sistemin büyüklüğüne, bulunduğu bölgeye, şebekeye bağlı ya da şebekeden bağımsız olmasına bağlı olarak, oldukça geniş bir aralıkta değişebilmektedir. Örneğin, şebekeden bağımsız 100-500Wbüyüklüğündeki güç sistemlerinin fiyatı 14$/W– 41$/W arasında değişirken, 1-4 kW sistemler için 10$/W- 28$/W arasında hesaplar çıkarılmıştır.

Sistemlerin büyüklüğü ile ters orantılı olan PV sistemleri için güç üretiminin fiyatı için en sağlıklı değerler, 1997 de başlayan bir Avrupa Topluluğu desteği ile yaşama geçirilen ve bu güne kadar en büyük PV güç sistemi projesi olan Grit adasının 50MW bir PV sistem ile elektrifikasyonunda ortaya çıkan rakamlardır. Çok kristalli silisyum modüllerin kullanıldığı projede 8.5 cent/kW-saat olan maliyet PV sektörü için oldukça isteklendiricidir.

Avusturya-Viyana da Temmuz 1998 de yapılan 2.dünya fotovoltaik enerji Konferansında belirtilen fotovoltaik gücün %30 -%40 arasındaki yıllık ortalama büyüme hızının (1997’de %40) sürmesi, fotovoltaik kurulu gücün 2030-2040 arasında 1000 gigawatt düzeye çıkmasını beraberinde getirecektir.

Kaynak: Prof. Dr. Mehmet CEBECİ ; “Güneş Pilleri ve Teknolojik Uygulamaları”
 
DEPAR SOLAR GROUP
Adres: Anadolu Blv.145.sk.10/33-47-48 Macunkoy 06370 Ankara Turkey TEL: +90.312.3977236 E-posta: info@deparsolar.com
Ziyaretçiler - Bugün: 26 Toplam: 1782805
© 2015 DEPAR SOLAR GROUP - Tüm Hakları Saklıdır. | AKSETWEB